Appearance
Golang
Golang 主要方向
- 区块链研发工程师
- Go 服务器端/游戏 软件工程师
- Golang分布式/云计算CDN 软件工程师
语言特点:
- 静态编译语言的安全和性能 + 动态语言开发维护的高效率
- 继承自C语言,表达式语法、控制结构、基础数据类型,调用参数传值,指针等。
- 引入包概念
- 自动GC
- 天然支持并发
- 语言层面支持并发
- goroutine,轻量级线程,高效利用多核实现大并发处理
- 基于CPS并发模型(Communicating Sequential Processes)实现
- 管道Channel,实现goroute之间相互通信
- 函数多个返回值
- 支持切片slice、延时执行defer等
前期准备
Mac环境变量
vi /etc/profile
epxort GOROOT=$Home/go_dev/go
export PATH=$PATH:$GOROOT/bin
export GOPATH=$HOME/goproject
source /etc/profile
1
2
3
4
5
6
7
2
3
4
5
6
7
开发注意事项:
- 文件以go结尾
- 执行入口为 main() 函数
- 严格区分大小写
- 开发时可省略分号(编译器会自动在每行后加分号),单行多条语句要加分号
- 引入的包或变量未使用时,无法通过编译
Go基础程序示例
package main
import "fmt"
func main() {
/* 这是我的第一个简单的程序 */
fmt.Println("Hello, World!")
}
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
基础语法
变量
- 指定变量类型,如未赋值,则使用默认值
- 根据值自动判断(类型推导)
- 省略 var 采用 :=
// var声明多个值
var n1, n2, n3 int
fmt.Println("FMT n1,n2,n3:", n1, n2, n3)
// 解构赋值
var m1, age, m3 = 100, "jack", 666
fmt.Println("FMT m1, age, m3:", m1, age, m3)
// 简化写法
s1, address, s3 := 200, "Beijign", 996
fmt.Println("FMT s1, address, s3:", s1, address, s3)
1
2
3
4
5
6
7
8
9
10
11
2
3
4
5
6
7
8
9
10
11
全局变量
定义在函数外的都是全局变量
使用注意事项
- 类型固定
- 不可重复定义
- 变量 = 变量名 + 值 + 数据类型
- 未赋值时,默认有初始值(int 为0,string为'',小数为0 等)
数据类型
- 基础数据类型
- 数值
- 整数类型(int,int8,int16,int32,int64,uint,uint8,uint16,uint32,unit64,byte)
- 浮点类型(float32,float64)
- 字符型(使用byte保存打个字母字符)
- 布尔型(bool)
- 字符串(string)
- 数值
- 复杂数据类型
- 指针(pointer)
- 数组
- 结构体(struct)
- 管道(channel)
- 函数
- 切片(slice)
- 接口(interface)
- map
数值
- 整数类型区分:有符号 和 无符号,int unit大小与系统有关
- 整型默认声明为int
PS: bit 计算机最小存储单位;byte:计算机中基本存储单元
- 浮点型有固定的范围和字段长度,不受操作系统影响
- 浮点型默认声明为float64,通常情况下也应该用float64,比较精确
- 浮点型常亮有两种表现形式
- 十进制:3.14 .1415926
- 科学计数法:3.14e2 = 3.14 * 10的2次方
字符串
Go没有专门的字符类型,使用byte存储单个字符,Go的字符串是由字节组成
println 输出码值,printf 输出内容
存储 ASCII 码可使用byte,否则建议使用 int
1
2
2
布尔
- 只有 true 和 false
- 占用1个字节
- 逻辑运算时使用
Go是强类型语言,不能用 0 或 非0 的整数替代 false 和 true
条件语句
if 循环
package main
import "fmt"
func main() {
var age int = 23
if age == 25 {
fmt.Println("true")
} else if age < 25 {
fmt.Println("too small")
} else {
fmt.Println("too big")
}
}
// too small
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
switch
package main
import "fmt"
func main() {
/* 定义局部变量 */
var grade string = "B"
var marks int = 90
switch marks {
case 90: grade = "A"
case 80: grade = "B"
case 50,60,70 : grade = "C"
default: grade = "D"
}
switch {
case grade == "A" :
fmt.Printf("优秀!\n" )
case grade == "B", grade == "C" :
fmt.Printf("良好\n" )
case grade == "D" :
fmt.Printf("及格\n" )
case grade == "F":
fmt.Printf("不及格\n" )
default:
fmt.Printf("差\n" );
}
fmt.Printf("你的等级是 %s\n", grade );
}
// 优秀!
// 你的等级是 A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
select
select 是 Go 中的一个控制结构,类似于用于通信的 switch 语句。每个 case 必须是一个通信操作,要么是发送要么是接收。
select 随机执行一个可运行的 case。如果没有 case 可运行,它将阻塞,直到有 case 可运行。一个默认的子句应该总是可运行的。
package main
import "fmt"
func main() {
var c1, c2, c3 chan int
var i1, i2 int
select {
case i1 = <-c1:
fmt.Printf("received ", i1, " from c1\n")
case c2 <- i2:
fmt.Printf("sent ", i2, " to c2\n")
case i3, ok := (<-c3): // same as: i3, ok := <-c3
if ok {
fmt.Printf("received ", i3, " from c3\n")
} else {
fmt.Printf("c3 is closed\n")
}
default:
fmt.Printf("no communication\n")
}
}
// no communication
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
函数
函数是基本的代码块,用于执行一个任务。
Go 语言最少有个 main() 函数。
你可以通过函数来划分不同功能,逻辑上每个函数执行的是指定的任务。
函数声明告诉了编译器函数的名称,返回类型,和参数。
Go 语言标准库提供了多种可动用的内置的函数。例如,len() 函数可以接受不同类型参数并返回该类型的长度。如果我们传入的是字符串则返回字符串的长度,如果传入的是数组,则返回数组中包含的元素个数。
func function_name( [parameter list] ) [return_types] {
函数体
}
/* 函数返回两个数的最大值 */
func max(num1, num2 int) int {
/* 声明局部变量 */
var result int
if (num1 > num2) {
result = num1
} else {
result = num2
}
return result
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
函数调用
package main
import "fmt"
func main() {
/* 定义局部变量 */
var a int = 100
var b int = 200
var ret int
/* 调用函数并返回最大值 */
ret = max(a, b)
fmt.Printf( "最大值是 : %d\n", ret )
}
/* 函数返回两个数的最大值 */
func max(num1, num2 int) int {
/* 定义局部变量 */
var result int
if (num1 > num2) {
result = num1
} else {
result = num2
}
return result
}
// 最大值是 : 200
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
函数返回多个值
package main
import "fmt"
func swap(x, y string) (string, string) {
return y, x
}
func main() {
a, b := swap("Google", "Runoob")
fmt.Println(a, b)
}
// Runoob Google
1
2
3
4
5
6
7
8
9
10
11
12
13
14
2
3
4
5
6
7
8
9
10
11
12
13
14
函数参数
值传递
/* 定义相互交换值的函数 */
func swap(x, y int) int {
var temp int
temp = x /* 保存 x 的值 */
x = y /* 将 y 值赋给 x */
y = temp /* 将 temp 值赋给 y*/
return temp;
}
package main
import "fmt"
func main() {
/* 定义局部变量 */
var a int = 100
var b int = 200
fmt.Printf("交换前 a 的值为 : %d\n", a )
fmt.Printf("交换前 b 的值为 : %d\n", b )
/* 通过调用函数来交换值 */
swap(a, b)
fmt.Printf("交换后 a 的值 : %d\n", a )
fmt.Printf("交换后 b 的值 : %d\n", b )
}
/* 定义相互交换值的函数 */
func swap(x, y int) int {
var temp int
temp = x /* 保存 x 的值 */
x = y /* 将 y 值赋给 x */
y = temp /* 将 temp 值赋给 y*/
return temp;
}
// 结果
交换前 a 的值为 : 100
交换前 b 的值为 : 200
交换后 a 的值 : 100
交换后 b 的值 : 200
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
引用传递值
/* 定义交换值函数*/
func swap(x *int, y *int) {
var temp int
temp = *x /* 保持 x 地址上的值 */
*x = *y /* 将 y 值赋给 x */
*y = temp /* 将 temp 值赋给 y */
}
package main
import "fmt"
func main() {
/* 定义局部变量 */
var a int = 100
var b int= 200
fmt.Printf("交换前,a 的值 : %d\n", a )
fmt.Printf("交换前,b 的值 : %d\n", b )
/* 调用 swap() 函数
* &a 指向 a 指针,a 变量的地址
* &b 指向 b 指针,b 变量的地址
*/
swap(&a, &b)
fmt.Printf("交换后,a 的值 : %d\n", a )
fmt.Printf("交换后,b 的值 : %d\n", b )
}
func swap(x *int, y *int) {
var temp int
temp = *x /* 保存 x 地址上的值 */
*x = *y /* 将 y 值赋给 x */
*y = temp /* 将 temp 值赋给 y */
}
// 结果
交换前,a 的值 : 100
交换前,b 的值 : 200
交换后,a 的值 : 200
交换后,b 的值 : 100
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
函数作为实参
package main
import (
"fmt"
"math"
)
func main(){
/* 声明函数变量 */
getSquareRoot := func(x float64) float64 {
return math.Sqrt(x)
}
/* 使用函数 */
fmt.Println(getSquareRoot(9))
}
// 3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
函数闭包
package main
import "fmt"
func getSequence() func() int {
i:=0
return func() int {
i+=1
return i
}
}
func main(){
/* nextNumber 为一个函数,函数 i 为 0 */
nextNumber := getSequence()
/* 调用 nextNumber 函数,i 变量自增 1 并返回 */
fmt.Println(nextNumber())
fmt.Println(nextNumber())
fmt.Println(nextNumber())
/* 创建新的函数 nextNumber1,并查看结果 */
nextNumber1 := getSequence()
fmt.Println(nextNumber1())
fmt.Println(nextNumber1())
}
// 结果
1
2
3
1
2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
函数方法
func (variable_name variable_data_type) function_name() [return_type]{
/* 函数体*/
}
package main
import (
"fmt"
)
/* 定义结构体 */
type Circle struct {
radius float64
}
func main() {
var c1 Circle
c1.radius = 10.00
fmt.Println("圆的面积 = ", c1.getArea())
}
//该 method 属于 Circle 类型对象中的方法
func (c Circle) getArea() float64 {
//c.radius 即为 Circle 类型对象中的属性
return 3.14 * c.radius * c.radius
}
// 圆的面积 = 314
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
数组
// 数组初始化
var balance = [5]float32{1000.0, 2.0, 3.4, 7.0, 50.0}
// 字面量方式
balance := [5]float32{1000.0, 2.0, 3.4, 7.0, 50.0}
// 长度不确定时
balance := [...]float32{1000.0, 2.0, 3.4, 7.0, 50.0}
// 如果设置了数组的长度,我们还可以通过指定下标来初始化元素:将索引为 1 和 3 的元素初始化
balance := [5]float32{1:2.0,3:7.0}
1
2
3
4
5
6
7
8
9
10
11
12
2
3
4
5
6
7
8
9
10
11
12
访问数组元素
package main
import "fmt"
func main() {
var n [10]int /* n 是一个长度为 10 的数组 */
var i,j int
/* 为数组 n 初始化元素 */
for i = 0; i < 10; i++ {
n[i] = i + 100 /* 设置元素为 i + 100 */
}
/* 输出每个数组元素的值 */
for j = 0; j < 10; j++ {
fmt.Printf("Element[%d] = %d\n", j, n[j] )
}
}
// 输出
// Element[0] = 100
// Element[1] = 101
// Element[2] = 102
// Element[3] = 103
// Element[4] = 104
// Element[5] = 105
// Element[6] = 106
// Element[7] = 107
// Element[8] = 108
// Element[9] = 109
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
package main
import "fmt"
func main() {
var i,j,k int
// 声明数组的同时快速初始化数组
balance := [5]float32{1000.0, 2.0, 3.4, 7.0, 50.0}
/* 输出数组元素 */ ...
for i = 0; i < 5; i++ {
fmt.Printf("balance[%d] = %f\n", i, balance[i] )
}
balance2 := [...]float32{1000.0, 2.0, 3.4, 7.0, 50.0}
/* 输出每个数组元素的值 */
for j = 0; j < 5; j++ {
fmt.Printf("balance2[%d] = %f\n", j, balance2[j] )
}
// 将索引为 1 和 3 的元素初始化
balance3 := [5]float32{1:2.0,3:7.0}
for k = 0; k < 5; k++ {
fmt.Printf("balance3[%d] = %f\n", k, balance3[k] )
}
}
// balance[0] = 1000.000000
// balance[1] = 2.000000
// balance[2] = 3.400000
// balance[3] = 7.000000
// balance[4] = 50.000000
// balance2[0] = 1000.000000
// balance2[1] = 2.000000
// balance2[2] = 3.400000
// balance2[3] = 7.000000
// balance2[4] = 50.000000
// balance3[0] = 0.000000
// balance3[1] = 2.000000
// balance3[2] = 0.000000
// balance3[3] = 7.000000
// balance3[4] = 0.000000
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
递归函数
语法格式如下
func recursion() {
recursion() /* 函数调用自身 */
}
func main() {
recursion()
}
1
2
3
4
5
6
7
2
3
4
5
6
7
阶乘
package main
import "fmt"
func Factorial(n uint64)(result uint64) {
if (n > 0) {
result = n * Factorial(n-1)
return result
}
return 1
}
func main() {
var i int = 15
fmt.Printf("%d 的阶乘是 %d\n", i, Factorial(uint64(i)))
}
// 输出
15 的阶乘是 1307674368000
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
斐波那契数列
package main
import "fmt"
func fibonacci(n int) int {
if n < 2 {
return n
}
return fibonacci(n-2) + fibonacci(n-1)
}
func main() {
var i int
for i = 0; i < 10; i++ {
fmt.Printf("%d\t", fibonacci(i))
}
}
// 输出
0 1 1 2 3 5 8 13 21 34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
类型转换
package main
import "fmt"
func main() {
var sum int = 17
var count int = 5
var mean float32
mean = float32(sum)/float32(count)
fmt.Printf("mean 的值为: %f\n",mean)
}
// mean 的值为: 3.400000
1
2
3
4
5
6
7
8
9
10
11
12
13
14
2
3
4
5
6
7
8
9
10
11
12
13
14
go 不支持隐式转换类型,只能显式调用
package main
import "fmt"
func main() {
var a int64 = 3
var b int32
b = int32(a)
fmt.Printf("b 为 : %d", b)
}
1
2
3
4
5
6
7
8
9
2
3
4
5
6
7
8
9
接口
接口它把所有的具有共性的方法定义在一起,任何其他类型只要实现了这些方法就是实现了这个接口。
/* 定义接口 */
type interface_name interface {
method_name1 [return_type]
method_name2 [return_type]
method_name3 [return_type]
...
method_namen [return_type]
}
/* 定义结构体 */
type struct_name struct {
/* variables */
}
/* 实现接口方法 */
func (struct_name_variable struct_name) method_name1() [return_type] {
/* 方法实现 */
}
...
func (struct_name_variable struct_name) method_namen() [return_type] {
/* 方法实现*/
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
例子中定义了一个接口Phone,接口里面有一个方法call()。然后我们在main函数里面定义了一个Phone类型变量,并分别为之赋值为NokiaPhone和IPhone。然后调用call()方法,输出结果如下:
package main
import (
"fmt"
)
type Phone interface {
call()
}
type NokiaPhone struct {
}
func (nokiaPhone NokiaPhone) call() {
fmt.Println("I am Nokia, I can call you!")
}
type IPhone struct {
}
func (iPhone IPhone) call() {
fmt.Println("I am iPhone, I can call you!")
}
func main() {
var phone Phone
phone = new(NokiaPhone)
phone.call()
phone = new(IPhone)
phone.call()
}
// I am Nokia, I can call you!
// I am iPhone, I can call you!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
结构体
Go 语言中数组可以存储同一类型的数据,但在结构体中我们可以为不同项定义不同的数据类型。
package main
import "fmt"
type Books struct {
title string
author string
subject string
book_id int
}
func main() {
// 创建一个新的结构体
fmt.Println(Books{"Go 语言", "www.runoob.com", "Go 语言教程", 6495407})
// 也可以使用 key => value 格式
fmt.Println(Books{title: "Go 语言", author: "www.runoob.com", subject: "Go 语言教程", book_id: 6495407})
// 忽略的字段为 0 或 空
fmt.Println(Books{title: "Go 语言", author: "www.runoob.com"})
}
// {Go 语言 www.runoob.com Go 语言教程 6495407}
// {Go 语言 www.runoob.com Go 语言教程 6495407}
// {Go 语言 www.runoob.com 0}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
错误处理
语言通过内置的错误接口提供了非常简单的错误处理机制。error类型是一个接口类型,这是它的定义:
type error interface {
Error() string
}
1
2
3
2
3
通过实现 error 接口类型来生成错误信息。函数通常在最后的返回值中返回错误信息。使用errors.New 可返回一个错误信息:
func Sqrt(f float64) (float64, error) {
if f < 0 {
return 0, errors.New("math: square root of negative number")
}
// 实现
}
1
2
3
4
5
6
2
3
4
5
6
package main
import (
"fmt"
)
// 定义一个 DivideError 结构
type DivideError struct {
dividee int
divider int
}
// 实现 `error` 接口
func (de *DivideError) Error() string {
strFormat := `
Cannot proceed, the divider is zero.
dividee: %d
divider: 0
`
return fmt.Sprintf(strFormat, de.dividee)
}
// 定义 `int` 类型除法运算的函数
func Divide(varDividee int, varDivider int) (result int, errorMsg string) {
if varDivider == 0 {
dData := DivideError{
dividee: varDividee,
divider: varDivider,
}
errorMsg = dData.Error()
return
} else {
return varDividee / varDivider, ""
}
}
func main() {
// 正常情况
if result, errorMsg := Divide(100, 10); errorMsg == "" {
fmt.Println("100/10 = ", result)
}
// 当除数为零的时候会返回错误信息
if _, errorMsg := Divide(100, 0); errorMsg != "" {
fmt.Println("errorMsg is: ", errorMsg)
}
}
// 输出
// 100/10 = 10
// errorMsg is:
// Cannot proceed, the divider is zero.
// dividee: 100
// divider: 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
并发
go 函数名( 参数列表 )
1
Go 允许使用 go 语句开启一个新的运行期线程, 即 goroutine,以一个不同的、新创建的 goroutine 来执行一个函数。 同一个程序中的所有 goroutine 共享同一个地址空间。
package main
import (
"fmt"
"time"
)
func say(s string) {
for i := 0; i < 5; i++ {
time.Sleep(100 * time.Millisecond)
fmt.Println(s)
}
}
func main() {
go say("world")
say("hello")
}
// world
// hello
// hello
// world
// world
// hello
// hello
// world
// world
// hello
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
通道(channel)是用来传递数据的一个数据结构。
通道可用于两个 goroutine 之间通过传递一个指定类型的值来同步运行和通讯。操作符 <- 用于指定通道的方向,发送或接收。如果未指定方向,则为双向通道。
ch <- v // 把 v 发送到通道 ch
v := <-ch // 从 ch 接收数据
// 并把值赋给 v
1
2
3
2
3
声明一个通道很简单,我们使用chan关键字即可,通道在使用前必须先创建:
ch := make(chan int)
1
默认情况下,通道是不带缓冲区的。发送端发送数据,同时必须有接收端相应的接收数据。
package main
import "fmt"
func sum(s []int, c chan int) {
sum := 0
for _, v := range s {
sum += v
}
c <- sum // 把 sum 发送到通道 c
}
func main() {
s := []int{7, 2, 8, -9, 4, 0}
c := make(chan int)
go sum(s[:len(s)/2], c)
go sum(s[len(s)/2:], c)
x, y := <-c, <-c // 从通道 c 中接收
fmt.Println(x, y, x+y)
}
// 输出:-5 17 12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
通道缓冲区
通道可以设置缓冲区,通过 make 的第二个参数指定缓冲区大小
ch := make(chan int, 100)
1
如果通道不带缓冲,发送方会阻塞直到接收方从通道中接收了值。如果通道带缓冲,发送方则会阻塞直到发送的值被拷贝到缓冲区内;如果缓冲区已满,则意味着需要等待直到某个接收方获取到一个值。接收方在有值可以接收之前会一直阻塞。
package main
import "fmt"
func main() {
// 这里我们定义了一个可以存储整数类型的带缓冲通道
// 缓冲区大小为2
ch := make(chan int, 2)
// 因为 ch 是带缓冲的通道,我们可以同时发送两个数据
// 而不用立刻需要去同步读取数据
ch <- 1
ch <- 2
// 获取这两个数据
fmt.Println(<-ch)
fmt.Println(<-ch)
}
// 输出
// 1
// 2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
遍历通道与关闭通道
通过 range 关键字来实现遍历读取到的数据,类似于与数组或切片。如果通道接收不到数据后 ok 就为 false,这时通道就可以使用 close() 函数来关闭。
package main
import (
"fmt"
)
func fibonacci(n int, c chan int) {
x, y := 0, 1
for i := 0; i < n; i++ {
c <- x
x, y = y, x+y
}
close(c)
}
func main() {
c := make(chan int, 10)
go fibonacci(cap(c), c)
// range 函数遍历每个从通道接收到的数据,因为 c 在发送完 10 个
// 数据之后就关闭了通道,所以这里我们 range 函数在接收到 10 个数据
// 之后就结束了。如果上面的 c 通道不关闭,那么 range 函数就不
// 会结束,从而在接收第 11 个数据的时候就阻塞了。
for i := range c {
fmt.Println(i)
}
}
// 输出
0
1
1
2
3
5
8
13
21
34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
框架 Gin
安装
- 下载并安装 gin
$ go get -u github.com/gin-gonic/gin
1
- 将 gin 引入到代码中
import "github.com/gin-gonic/gin"
1
- 如果使用诸如 http.StatusOK 之类的常量,则需要引入 net/http 包(可选)
import "net/http"
1
- 创建你的项目文件夹并 cd 进去
$ mkdir -p $GOPATH/src/github.com/myusername/project && cd "$_"
1
- 拷贝一个初始模板到你的项目里
curl https://raw.githubusercontent.com/gin-gonic/examples/master/basic/main.go > main.go
1
- 运行你的项目
go run main.go
1